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Three-point odd-order correlations and four-point evcn-order correlations of 
the longitudinal velocity fluctuations in grid-generated turbulence have been 
measured using linearized hot-wire anemometry, digital sampling, and a high- 
speed digital computer. The measured correlations are compared with relations 
between higher-order correlations corresponding to non-Gaussian Gram-Charlier 
joint probability densities for three and four variables. The fourth-order, three- 
point Gram-Charlier distribution accurately describes the relation between 
measured odd-order three-point correlations. The measured fourth-order even- 
order correlations may be accurately predicted from the two-point correlation 
using Millionshtchikov’s joint-Gaussian hypothesis, except for small values of 
the separations. The disagreement at  small separations cannot be reduced through 
use of the Gram-Charlier approximation. 

1. Introduction 
Recent work by Frenkiel & Klebanoff (1967a) and Van Atta & Chen (1968, 

hereinafter often referred to as I) has experimentally determined the relations 
between two-point higher-order time correlations for grid-generated turbulence. 
These studies showed that except for very small values of the time separation all 
two-point even-order correlations may be accurately predicted from the second- 
order correlation by assuming a Gaussian joint probability density for fluctua- 
tions a t  different times, while a non-Gaussian Gram-Charlier distribution describes 
relations between the odd-order correlations remarkably well. These findings 
involve two-point correlations only, whereas some theoretical investigations are 
concerned with correlations defined a t  a larger number of points and with the 
relations between associated higher and lower order correlations. In  the present 
investigation, we have therefore extended the previous measurements to some 
three- and four-point correlations and compared the measured correlations with 
corresponding results for Gaussian and non-Gaussian probability distributions 
in the hope that the results may prove useful for future theoretical investigations. 

2. Experimental arrangement 
The experiments were carried out in the 76 cm by 76 cm by 9 m test section of 

the low-turbulence wind tunnel in the Department of Aerospace and Mechanical 
Printed in Great Britain, 
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Engineering Sciences. A biplane grid of round, polished dural rods was located 
2.4 m from the end of the contraction section. The grid mesh size N was 5.08 ern 
with rods of 0.953 em diameter. The mean velocity V was 7.7 m/sec, and the 
corresponding Reynolds number based on mesh spacing was 25,300. All detailed 
digital measurements were made at xlM = 48, where xis the distance downstream 
from the grid. 

A tungsten hot-wire, 1 mm long and 5,u diameter was used to measure u, 
the longitudinal fluctuating component of the turbulent velocity field. A DISA 
55A01 amplifier was used to operate the hot-wire at constant resistance with 
overheat ratio of 0-5. The hot-wire output was linearized using a DISA 551)lO 
linearizer. The linearized hot-wire signal was F M  tape recorded at  a tape speed 
of 152.4 cmlsec using a Sanborn 3917 A recorder. The analogue tape was later 
played back and sampled with an analogue-to-digital converter at  a rate of 
5616 samples per second, somewhat faster than twice the highest frequency 
for which the turbulent spectrum was unmistakably distinguishable from elec- 
tronic noise. These digital data were in fact a part of the data a,vailable from an 
earlier study of two-point correlations by Van Atta & Chen (1968) and the 
present measurements therefore directly complement and extend these earlier 
results. Using a CDC 3600 computer, the digital data were processed in several 
sections, using an averaging time of 54.7 see (307,200 digital velocity samples) 
for each section. All even-order correlations computed were based on four samples 
of this length, while all odd-order correlations were based on seven samples of 
this length. 

3. Computation method 
In  the present study, we consider time correlations derived from a knowledge 

of the time history of the velocity at  a single point. If one invokes Taylor's 
hypothesis, the time correlations may be alternately interpreted as space 
correlations in a homogeneous turbulent field. Thus, an n-point time correlation 
may be reinterpreted as an n-point space correlation. 

Some three-point time correlations have previously been computed in un- 
published measurements by Frenkiel & Klebanoff ( 1967 b )  using direct computa- 
tion of mean lagged products. We have not used this method in the present work, 
but have instead employed a slight modification of the fast-Fourier transform 
method described by Van Atta & Chen (1968). Before describing the comput a t' ion 
method actually used, it may be of value to point out a similar but more general 
method of computing nth order correlations which was not used in the present 
work, partially because of computer memory limitations. 

The (n + 1) point correlation is defined as 

R(71, 72, . . . , 7,)(U2)*("+1) = (U(t)U(t + 7J . . . u(t + 7,)) 
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If we take the n-dimensional finite Fourier transform of the correlation, we obtain 
the nth order spectrum 

fl,(fl,fZ, * f * J n )  

= jm . . . p ( r l ,  . . . , 7,) (uz)&n+1)exp ( - i2n c fiTi) drl, . . . , dr,  
--m i 

[u(t)u(t+T1) .. . u(t +r,)]exp ( -  i 2 n X f i ~ ~ ) d 7 ~ ,  ..., dr,dt. 
= (l/T)/" --m -BT i 

(2) 
Letting ti = t+ri (i = 1, ..., n), (2) becomes 

3T 
#,(ti, . . . ,f,) = ( I / T )  1 u(t)exp (i2n(~fi)t) dt n u(ti) exp ( - i2nfiti)dt, 

-4 T [: s_ma 
= (1/T) U [  - (fl + f z  + * f * +I@,)] U(f1) W Z )  . . . U(f,)  

U ( f )  is the first-order complex discrete Fourier transform of the signal given by 

N-1 

t = O  
U ( f )  = C utexp( -iBnft/N) ( f  = 0,1 ,  .. ., N -  1)) 

which is equivalent to the transform of the truncated continuous function 

From (3) we see that the nth order spectrum is determined simply as a product 
of the values of the one-dimensional complex Fourier transform a t  certain com- 
binations of frequencies, and hence all higher order spectra may be determined 
from a single transform of the time series. The symmetries associated with such 
polyspectra and their interpretation have been discussed by Brillinger & Rosen- 
blatt (1967). 

The (n + 1)-point correlation may then be obtained by taking the n-dimensional 
inverse Fourier transform of 8, 

(4) 
As explained by Cooley & Tukey (1966), if one uses the fast-Fourier transform 

algorithm to perform the transforms, it is computationally faster to obtain both 
the spectrum and the correlation function in this manner than to obtain the 
correlation function alone by directly computing mean lagged products. Al- 
though this method is attractive in principle, one sees from the form of (3) that 
memory requirements for storing the arrays to be inverse transformed increase 
sharply with n. I n  fact, in the present measurements we found it impractical 
to  attempt to use this method even for the case n = 2 (bi-spectrum), which re- 
quires a two-dimensional Fourier transform. We have therefore computed the 
higher-order correlations using one-dimensional transforms only, by adopting 
the following procedure. 
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We define a modified form of the correlation 

R(T1, . . . , 7&, 7, 7 + T i ,  . . . , 7 f T;)(U2)h(k+zf2)  = R(T1, T 2 ,  . . . , 7k+l+l) (U2)*(k+zf2) 

= ( U k ( T 1 , 7 2 ,  *..77k,t)U1(T;,T1, . . . , 7 ; , t + 7 ) ) ,  ( 5 )  
where Uk(T1,72 ,  . . . , T k ,  t )  U ( t )  U ( t  f 71) . . . U ( t  4- T k ) .  ( 6 )  

Taking the transform with respect to 7 produces the one-dimensional spect'rum 

J --m 

The correlation produced by the inverse transform is then 

B ( T ~ ,  . . . , rk, T ,  T + 7;, . . . , T + 7;) ( ~ 2 ) * ( k + l + 2 )  

io 

- f i k l ( ~ l ,  ..., Tk,T; ,  ..., T;,f)exp(&rfT)df. (9) 

The essential new feature is that the product u ~ ( T ~ ,  T ~ ,  . . . , 7k,  t ) ,  where the T ~ ,  . ((. , 7k 

are fixed, is treated as a new time series and processed in the usual fashion. 
The correlation function is obtained for all values of 7, but only for given fixed 
values of each T ~ ~ .  The procedure must be repeated for each new value o l  7k,  

whereas thegeneral method previously outlined produced the correlation function 
for all values of the T~ in one cycle of the computation. This general procedure is 
exhibited more clearly in the results for particular correlations that follow. 

- 1 - m  

4. Measured correlations 
4.1. Three-point odd-order v e l o c i t y  c o r r e l a t i o n s  

In  the following sections, we adopt the superscript notation introduced by 
Frenkiel & Klebanoff ( 1 9 6 7 ~ )  to explicitly denote the number of points and 
powers of the longitudinal fluctuating velocity involved in each correlation. 

The t,hree-point third-order correlation is 

R1*l*l(Tl, T ) ( U 2 ) S  = ( U ( t ) U ( t f T 1 ) U ( t f T ) ) .  

and 

The complex spectrum is 

and the correlation is given by 
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The results for the three-point correlation for positive r and six fixed values of 
are shown in figure 1, and for negative r and several fixed values of r1 in figure 

2. The behaviour of the correlation in other quadrants of the variables r1 and T 

and along certain preferred axes (e.g. = r2)  can be found from the symmetry 
properties of the correlation. This correlation has been mentioned by Meecham & 
Jeng (1968) as being of vital importance in some theoretical studies. Here we 

Rl. 1.1 

0 0 

o o o  0 
0 

0 0 0  
I I I I I I 

FIGURE 1. Triple correlations. R ~ S ~ ~ ~ ( T , , T )  = ( U ( ~ ) U ( ~ + T ~ ) U ( ~ + T ) ) / ( U ~ ) ~  for fixed 
values of UT,/M. 

-0.04 0 
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shall not attempt to discuss the present data in this context, but present these 
results because they are needed to  compute the fifth-order, three-point correla- 
tion using the relations corresponding to the Gram-Charlier distribution in 
order to compare with the directly measured fifth-order, three-point correlations. 

Several fifth-order, three-point correlations were computed in order to deter- 
mine whether the Gram-Charlier approximation for the three-point joint prob- 
ability density can successfully describe relations between odd-point correlations 

0.02 t 
e0 

-0.04 .O 

0 
8 

8 . .  

-0.14 I I I I t I 1 I I 
0.0 0.4 0.8 1.2 1.6 2.0 2 4  2.8 3.2 

UT/M 

FIGURE 3. Three-point, fifth-order correlations. R2,2,1(~,,7) = (uZ(t) uZ(t + T ~ )  u(t + T ) ) / ( u Z ) ) ~ :  

for fixed UT,/M = 0.94464. (a )  Measured correlations: 0, positive T ;  B, negati1.c: T .  

( b )  Calculated from lower order correlations using Gram-Charlicr fourth-order non-Gaussian 
joint probability distribution: 0, positive T ;  0, ncgative T.  

of different order as was found for odd-order, two-point correlations by Frenkicl 
& Iilebanoff ( 1 9 6 7 ~ )  and in I. The additional functions U3(0,7,,71,f) and 
UJ(O, 0, 71,j) were formed and combined with previously available functions to 
calculate 

R 2 , 2 , 1 ( ~ 1 ,  7) (u')$ = ( ~ ' ( ( t )  u2(t + T ~ )  ~ ( t  + 7) )  

and R3'1 ,1 (~1 ,  7)(U2)g = ( u 3 ( ( t ) U ( t + T 1 ) U ( t + 7 ) ) .  

The measured correlations are shown in figures 3 and 4, arid are compared with 
the corresponding fifth-order, three-point correlations calculated from the 
measured third-order, three-point correlations using the relations for a fourth- 
order, three-point Gram-Charlier distribution given by Van Atta & Yeh (1970). 
The appropriate relations are 
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where a subscript notation has been adopted for the two-point correlations, 
designating a t  which of the three points the velocities are measured; e.g. 
R2,, = Ro,l,l. There is good agreement between the directly measured and com- 
puted correlations, and we conclude that the relations between odd-point 
correlations corresponding to the Gram-Charlier approximation provide an 
accurate description of the experimental data. For two-point correlations the 
approximation works well up to the highest order so far considered (seventh), 
and it seems likely that the approximation will continue to be accurate for higher 
order three-point correlations. 

-0.16 I I I I I I I I I 
0.0 0.4 0.8 1 -2 1 *6 2.0 2.4 2.8 3.2 

U7/M 

FIGURE 4. Three-point, fifth-order correlations. R 3 , 1 , 1 ( ~ l , ~ )  = (us(t)u(t+ ~ ~ ) u ( t  +7))/(ua)* 
for fixed U T J M  = 0.94484. (a)  Measured correlations: 0, positive T ;  M, negative 7. 
( b )  Calculated from lower order correlations using Gram-Charlier fourth-order non-Gaussian 
joint probability distribution: 0, positive 7; 0, negative 7. 

4.2. Four-point, fourth-order correlations 

The four-point, fourth-order correlation was computed in order to test the 
accuracy of Millionshtchikov's ( 1  939) hypothesis for four-point time correlations. 
As originally formulated, this hypothesis provides an expression for two-point 
fourth-order correlations in terms of second-order correlations under the assump- 
tion of a joint-normal probability distribution for the velocities at  the two points. 
The measurements of Frenkiel & Klebanoff ( 1 9 6 7 ~ )  and those reported in I 
showed that the hypothesis is accurate except for very small time separations, 
where small but measurable differences between computed and measured correla- 
tions exist. On theoretical grounds, Kraichnan (1957)  concluded that the hypo- 
thesis was inconsistent with the equations of motion. It is of interest to further 
test the hypothesis (in an extended form) for correlations involving more than 
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two-points. To minimize computation time, we have determined this correlation 
only for certain restricted values of the separations, as follows. The values were 
chosen such that the transforms available from the triple correlation computa- 
tions (stored on magnetic tape) could be used again, thus avoiding recomputation 
of some transforms. 

l o  6 

0.0 I I I I I I I I I 
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2 4  3-2 

Ur/M 

FIGURE 5 .  Fourth-order correlations. 

~ 1 , ' ~ 1 . 1 ( 7 1 ,  7,7, f 7 )  = (U( t )U( t  f 71) U(t  f 7) U(t  f T Z  f 7 ) ) / ( U 2 ) 2  

for fixcd UT,/M = 0.94464 and U r J M  = 0.32388. (a )  Measured correlations: e, positive 
7; m, negative 7. ( b )  Calculated from Gram-Charlier third-order non-Gaussian probability 
distxibution: 0, positive 7 ;  0, negative 7. 

could be immediately determined since U1(71, f )  were available from the triple 
correlation computations, and then 

m 
E 1 * l , l , l ( ~ l , ~ ,  7 + ~ ~ ) ( u ~ ) ~  = x,1(71,72,f)exp(i2~f~)df L 

= (u(t)u(t + 7 1 ) @ J ( t + T ) u ( t +  7 2  +7))  

was determined from a single transform. Similarly, since 

@J2(71,72,t) = u(t)u(t+Tl)u(t+72) 

and 
J -w 
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and the correlation is 

These particular four-point correlations are two cross-sectional cuts through the 
general correlation function. The first is easily computed with minimal computer 
time if the U1(7,f) are stored on digital tape, while for the second one we first 
form the additional function U2(71, 72,f). The values of the time separations 
chosen were the same as used for the triple correlations. 

0 nn 

0 
0 

U(f f71)  u(t+ 4 u(t+r) - 
3 

5 0.3 . 
G 

0.2 . 

0.1 . 

^ ^  O m n -  
I 

- -  u u  I I I I - I 

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 
UT/M 

FIGURE 6. Fourth-order correlations. R 1 , ' ~ ' ~ ' ( ~ , , ~ , , ~ )  = (u(t)u(t + T ~ ) u ( ~ + T ~ ) u ( ~  +r)) / (u2) ,  
for fixed U T J M  = 0.32388 and U T J M  = 0.94464. (a)  Measured correlations: e, positive 
T ; W, negative 7. ( b )  Calculated from Gram-Charlier third-order non-Gaussian probability 
distribution: 0, positive 7 ;  U, negative T .  

The correlations for both positive and negative r are shown in figures 5 and 6. 
The correlations are very smooth, aIthough less data were used than for the triple 
correlations. This relative behaviour is very similar to  that found for the even- 
and odd-order two-point correlations in I, and reflects the fact that  even-point 
correlations are dominated by the nearly Gaussian nature of the signal, 
while the odd-point correlations are a direct measure of the small departures 
from Gaussian statistics. These correlations are not symmetrical about 7 = 0 
since the cuts they represent are not directly across planes of symmetry. How- 
ever, R4(r1, r ,  r2 + 7) is taken parallel to a plane of symmetry and is symmetric 
about the point 7 = 0.31. Also shown in figures 5 and 6 are the corresponding 

12 F L M  41 
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four-point correlations computed from the two-point correlation using Million- 
shtchikov’s hypothesis, i.e. 

These results are in excellent agreement with the measured correlations, except 
for a small region near 171 = 0, (? = (7; + 7; + T ~ ) * )  where the differences increase 
to about 4%. Letting dr = Vdt by Taylor’s hypothesis and interpreting the 
results as space correlations, we infer from the present measurements and those 
of I that some of the difficulties arising in theoretical investigations employing 
the Millionshtchikov hypothesis are due to its failure for the smallest spatial 
separations. 

With respect to the differences near 171 = 0,  we note that in a similar situation 
Frenkiel & Klebanoff (1967 a)  found that the Gram-Charlier distribution provided 
an improved fit for the even-order two-point correlations for small separations. 
However, in the present case, the appropriate third-order, four-point Gram- 
Charlier probability distribution yields precisely the same relation between 
four- and two-point correlations as the joint-Gaussian hypothesis, and hence 
no improved fit to the data is obtained from the Gram-Charlier approximation 
in this case. 
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